
cs4fn and computational thinking unplugged

Paul Curzon
Queen Mary University of London

Mile End, London E1 4NS
United Kingdom

p.curzon@qmul.ac.uk

ABSTRACT
‘Computer Science for Fun’ (cs4fn) is a public engagement
project aiming to both enthuse school students about inter-
disciplinary computer science and support computing teach-
ers. It started in 2005, with cs4fn resources now widely used
in UK schools as well as internationally. We overview the
approach cs4fn has used to inspire students and teachers. In
particular we look at how not only subject knowledge but
also computational thinking ideas can be taught in an inte-
grated way using cs4fn ‘unplugged’ activities embedded in
stories. We give two illustrative examples, one based on the
problem of helping people with locked-in syndrome commu-
nicate, the second based around magic tricks.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education

General Terms
Human Factors

Keywords
cs4fn, computational thinking, unplugged, K-12 education

1. INTRODUCTION
The cs4fn project [4, 6, 2, 3, 14, 13] is a public engagement

and outreach campaign based at Queen Mary, University of
London run by Paul Curzon, Peter McOwan and Jonathan
Black. It began in 2005 as a response to the global collapse
in interest in computer science post 2000. It consists of a
magazine [9], a website (www.cs4fn.org), live shows [7] and
support for school teachers, all focusing on the idea of inspir-
ing students about the subject. The project explicitly goes
beyond the school curriculum: we write about and present
research topics in accessible ways. This encourages students
to learn in ‘hobby-mode’, helps provide a context for the
subject, and shows the subject’s exciting leading edge.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIPSCE ’13, November 11-13, 2013 Aarhus, Denmark.
Copyright 2013 ACM 978-1-4503-2455-7/11/13 ...$15.00.

While the original primary aim of the cs4fn project was
to inspire secondary school students, age 14+, about inter-
disciplinary computer science, that aim has broadened in
several ways as the project has progressed. We have ex-
tended our resources to younger secondary school and pri-
mary school children. Furthermore, originally our support
for teachers was indirect, providing magazines and web re-
sources for them to pass on to students, but that they might
find interesting and useful to read themselves. We have in
recent years introduced a new emphasis on supporting teach-
ers directly, with cs4fn continuous professional development
sessions, downloadable activity sheets and other resources
directed primarily at teachers rather than their students.
This move towards supporting teachers directly has been in
part in response to a major change in UK policy away from
a curriculum focusing on the use of technology to one on
computer science being taught at all stages from primary to
secondary school. There is however a skills shortage, with
teachers being required to rapidly adapt to the new curricu-
lum. Similar issues face other countries within their own
local contexts.

2. THE SUCCESS OF CS4FN
The cs4fn project has been highly successful on a range

of measures. For example, demand for physical copies of
the magazine is strong and has increased steadily. We send
individual copies to 5400 schools across the UK. Over 1000
schools or individual teachers have then in addition sub-
scribed to extra copies (e.g., class sets). These are used
in a variety of ways: with ‘gifted and talented’ groups and
with ‘problem’ classes, to use directly in class and to be left
for students to read in break times, and even as a differ-
ent kind of reading material placed in literacy boxes. We
have also had requests for physical copies from subscribers
in over 80 countries. In a survey of teachers conducted in
2012, 98% rated the cs4fn magazine as either “excellent” or
“good”. 77% agreed that they could use articles or ideas
from cs4fn in their lessons.

The website has been similarly successful. Between 2008
and 2013 it has received over a million visits and PDFs of our
magazines and other resources have been downloaded over
890,000 times. Web users have been positive in surveys with
over two thirds of respondents saying cs4fn helped them see
more ways computer science is used in the real world. After
visiting the cs4fn website, they reported thinking of com-
puter science as more interesting and thinking of a variety
of careers that would use computer science.

Our series of shows in schools have also been very popular

47

with talks given to nearly 20,000 school students in some
270 visits to schools and universities and over 10,000 more
through science festival stalls. Teachers have been highly
positive of these school talks in follow-up surveys. With
100% of those surveyed, for example, saying our live shows
met their needs and that they would recommend them to
others. These surveys also suggest students are more likely
to take computing courses as a result.

The success of cs4fn is due to a variety of reasons, though
the idea of telling research stories in a fun way is key. Having
a clear and fun narrative, with interesting twists and links,
is central to all we do. We use metaphors a great deal as
a form of scaffolding to build on everyday non-computing
ideas of which people are already aware from everyday life.
In particular, we extensively use non-computer based ex-
amples of computation to illustrate concepts. This extends
naturally to our talks in the form of kinaesthetic ‘unplugged’
activities where computation is acted out in various forms
away from computers, making abstract concepts both tan-
gible and visible [10]. In general we do not do unplugged
activities in isolation but embed them within a narrative in
talks. This approach gives a way, not only to deliver subject
knowledge, but also to introduce the concept of computa-
tional thinking [16].

3. COMPUTATIONAL THINKING
Jeanette Wing [16] argued that computational thinking

is a set of transferable skills developed while studying com-
puter science that are different to that developed more gen-
erally or around other disciplines. The idea has become ex-
tremely popular, and has now been included as part of the
UK school curriculum. Core concepts within the computa-
tional thinking skill set include algorithmic problem solving,
logical thinking and the ability to use a variety of forms of
abstraction.

If computational thinking is an important skill set to be
gained by studying computing, as Wing has argued, the
question arises: how do you best teach it to school chil-
dren? [17] One answer is that these are skills that you just
pick up by studying the subject. As you learn to program,
write more programs, do a course in data structures and al-
gorithms, and so on, you will gradually pick up algorithmic
problem solving skills. Logic and proof courses in addition
will improve your logical thinking and rigorous argument
skills, and so on. This is true up to a point, but if the skill
set is so important then as teachers we should be actively
helping students develop that integrated skill set. One of
the issues with this as an answer is also that it suggests that
computational thinking as a whole is developed fairly late
on. It is very hard to gain a deep understanding of the issues
from writing small programs or doing simple logic problems,
for example.

We are interested in how one might introduce the overall
idea of computational thinking, both in schools and to teach-
ers themselves, and especially at an early stage when stu-
dents may have little actual computing experience. Rather
than introducing the separate skills in some order we believe
it is important to see how the whole coherently fits together.
If people understand the combined skill set from the start,
they will be able to develop those skills more effectively.

We are therefore particularly interested in exploring ways
to introduce computational thinking itself as a coherent skill
set, before the skills embodied in the elements have been

fully developed. Is it possible to introduce the ideas to com-
plete novices who cannot yet even program? Can it be in-
troduced to younger children, including those who will not
do computer science in any depth in their later studies? A
further issue is the importance of introducing the idea that
computational thinking is not actually just about computer-
based problem solving. If the skills are only developed in a
computer science context then this may easily be lost.

Based on these ideas, we have been introducing compu-
tational thinking using the cs4fn approach of making things
fun using research-driven storytelling together with unplugged
activities, as we have previously successfully done with sub-
ject knowledge. We hope in particular that we can give
teachers a deeper understanding of computational thinking,
as well as giving them concrete activities that they can use
in their own lessons.

We have focused on a series of sub-skills from within the
computational thinking family, but aimed to show how they
combine and interact together. In particular we have con-
centrated on the following: algorithmic problem solving,
logical thinking, analysis of the efficiency of solutions, rig-
orous argument and proof, translating solutions between
domains, computational modeling, abstraction and under-
standing people.

The latter point concerning understanding people is not
always focused on in the computational thinking set of skills,
however we believe it is an incredibly important transferable
skill that computer science students should and do develop
as part of human-computer interaction strands of their stud-
ies, for example. Computer scientists solve problems, but
those solutions are ultimately for people, so must be de-
signed to work for people.

4. EXAMPLES OF THE CS4FN APPROACH
Unplugged activities are typically used to both inspire stu-

dents about computer science and teach subject knowledge:
whether binary numbers, human-computer interaction prin-
ciples or error-checking codes. They can also be used to in-
troduce computational thinking concepts to novices giving
an understanding of how the different skill elements work
together. The links from the activities to computational
thinking concepts need to be explicitly drawn out. Embed-
ding the activities in stories helps to give the bigger picture.
In the following subsections we overview two (of many) ex-
amples we have used to introduce these ideas explicitly to
teachers as part of continuous professional development ses-
sions. Our aim is to both illustrate the cs4fn approach gen-
erally and show how direct links to computational thinking
ideas can be made using it.

4.1 Locked-in Syndrome
Our first example is based on the problem of helping some-

one with locked-in syndrome. In its full version with stu-
dents we do this as an hour long interactive lecture session.
We give a compressed version for teachers. A full version of
the ‘story’ we tell and how it links to computational thinking
is given in [5]. Here we give an overview.

Locked in syndrome is a medical condition where a person
is totally paralysed. If lucky they can blink one eyelid. In his
autobiography [1] Jean-Dominique Bauby describes life with
locked-in syndrome. He wrote the book only able to blink
one eye and without any technological help. He just had a
human to write down his words. We explore with the audi-

48

ence how he did this. The helper read through the letters
of the alphabet until Bauby blinked then wrote that letter
down. As a simple unplugged activity we get the audience
to communicate a message to their neighbour in this way,
and then explore with them issues that have to be solved
to make it work. The audience discover, for example, the
need for a backup mechanism to correct errors, and a way
to deal with numbers and punctuation. They also normally
suggest ways to improve it such as predicting words from
the first few letters. At this point we can discuss algorith-
mic problem solving in a situation where getting the detail
right matters, even though we are not talking about com-
puters. We also immediately have an example of translating
solutions in that predicting words is all predictive texting
does - a solution for dealing with the difficulty of typing on
a small device is applicable in this context too.

We then explore how much effort must have been needed
to write the book. We introduce an abstraction at this point.
Rather than worrying about actual times we use a measure
of work instead: the number of letters of the alphabet spoken
(i.e., questions asked) by the helper. We then talk through a
simple best / worst / average case analysis based on commu-
nicating an individual letter. We have the basis to discuss
ideas of both abstraction and analysis of efficiency even with
novices.

We next point out that rather than the 13 letter average
case of this method, it is possible to do it in 5 questions in
the worst case. A show of hands implies most don’t know
how this could be done. We suggest everyone knows the
kind of question to ask if we switch problems. We then do
another unplugged activity - playing the children’s game of
20-Questions where they have to work out which famous per-
son someone is thinking of by only asking yes-no questions.
They are encouraged to think about the kind of question
people are asking and what makes good questions. From
the start they ask questions that eliminate half the possi-
ble answers, and can explain why those are good questions.
This leads to a discussion of search algorithms, divide and
conquer, and more analytical thinking about its efficiency -
from a million famous people we could know who it was in
20 perfect questions as shown by repeatedly halving a mil-
lion. We also have another example of translating problems
as now we can apply this solution to our original problem
of working out a letter someone is thinking of. Only at this
point do we bring in ideas for technological help - how might
you replace the human helper with a computer system that
implements the algorithm we have come up with?

The audience at this point generally agree that with some
computer science / computational thinking we have made
Bauby’s life better. We end with a final twist - were we
counting the right thing? Bauby would now have to blink
up to 5 times instead of just once per letter. We might have
made things better but if blinking is hard for him we may
have made things worse. We should have found out first.
Ultimately our problem solving is for people so we have to
be sure our analysis and solutions fit their actual problems.

Compressed into this one problem solving story we can il-
lustrate a variety of different aspects of computational think-
ing, and also how they work together. This is a very accessi-
ble way to introduce the concepts and how they can be used
to solve a real world problem. All this has been embedded
in a story with no technology and no code involved until the
end in a way that novices can follow.

4.2 Magic
A second way to introduce computational thinking is a

computer science magic show [7, 15, 8]. In addition to giving
live shows we also have 2 free to download magic of computer
science books [11, 12] and a major area of the cs4fn website
(www.cs4fn.org/magic/) devoted to magic where each of the
tricks outlined below are described in full. The idea is to use
magic tricks to illustrate computing concepts. We do a real
magic trick and then challenge the audience to work out
how it works, before explaining the secret. Finally we ex-
plain linked computing concepts. We have developed a wide
range of trick based lessons around this format, illustrating
a variety of concepts including what algorithms are, search
algorithms, error correcting codes (adapted from a CS Un-
plugged activity), why rigorous testing is important, formal
verification, usability and user experience.

The key is that any magic trick consists of a secret method
(an algorithm) and a presentation (the interaction design).
Unless both work a magic trick will not work. The link be-
tween magic method and computer algorithm is not just a
metaphor. Some magic tricks even use identical algorithms
to computer algorithms. For example, one trick allows the
magician to reveal a card hidden in an envelope throughout
the trick that is the same as one selected by a member of
the audience. The secret mechanism is just a simple search
algorithm. The mechanism of another trick that allows a
blindfolded magician to know exactly what card in a grid
was turned over is a parity-based error correcting code. This
gives an aspect of computational thinking that can be intro-
duced immediately: that of translating solutions between
domains. One algorithm can work in domains as apparently
different as predicting a chosen card in a magic trick and
computers searching for data.

Inventing new magic trick mechanisms involves the same
skill as inventing new algorithms. This gives a way of show-
ing what algorithmic thinking is, separate from coding it-
self. With a magic trick you also have to specify the steps
precisely and in the right order even though they are for a
human not a computer to follow. They must work whatever
happens: whatever card is chosen, for example.

The fact that presentation matters in magic also gives a
natural way to introduce the importance of understanding
people in creating algorithms. In fact the same understand-
ing of cognitive psychology is needed to make a trick work
well as make a program usable. Tricks give a powerful way
to demonstrate how the way a system is engineered can af-
fect whether people make mistakes or not. Magicians control
people’s attention to make them all make a mistake at the
same time, a computer interface needs to be designed to
control their attention so they do not miss things. Under-
standing people matters.

No one wants to stand in front of a live audience and do
a trick that might not work. Tricks gives a natural way
of introducing the idea of testing and also how it can be
insufficient. This leads to logical thinking and how it can
lead to a reduction in test cases needed to be sure a trick
will work, and then a discussion of how rigorous argument
and proof can be used to prove the correctness of a trick
(or algorithm). Ideas of mathematical and computational
modelling can also be introduced. There are various ways
that tricks can be argued to be correct. Some involve math-
ematical notation for appropriate audiences but maths can
be avoided in the discussion (e.g., using diagramatic proof).

49

The arguments used also give a way to introduce abstrac-
tion. For example, in a proof of one trick we abstract away
from their actual values and refer to the cards involved by
their original position as a way to simplify the argument.

Magic tricks thus can give a powerful way to introduce a
range of computational thinking concepts. Creating a trick
that you are sure works requires bringing all these concepts
into play. This can be done with an audience with no com-
puting experience at all. It can be done around a single
trick or a series of different ones each emphasising a dif-
ferent aspect. We give a whole magic show embedded in a
story around our own research on the design of safer medical
devices. The magic tricks are used to explore the issues in
ensuring such safety critical computer devices work correctly
and those using them do not make mistakes, for example in
delivering correct doses of drugs. The magic show also illus-
trates that not only computer scientists but also magicians
need to develop computational thinking skills.

5. CONCLUSIONS
cs4fn has been a highly popular way of enthusing both

students and teachers about computing, introducing subject
knowledge in a fun way that both reinforces and goes beyond
school syllabuses. More recently we have used the same
approach of research based fun storytelling and unplugged
activities to explicitly introduce the idea of computational
thinking. We have outlined two examples (of many) we have
used to illustrate the approach.

Feedback about the cs4fn style of session has been ex-
tremely positive from teachers both about sessions for stu-
dents and for teachers themselves. For example, a survey-
based evaluation of one recent 2-hour continuous profes-
sional development workshop adopting the approach out-
lined above had 100% positive satisfaction ratings from the
teachers (20 responding from 48 attending) with all agreeing
it had given them useful ideas for the classroom.

6. ACKNOWLEDGMENTS
cs4fn was funded by EPSRC (EP/F032641/1) (2008-2013)

with additional support from Google’s CS4HS programme.
This paper was written with support from the CHI+MED
project, funded by EPSRC (EP/G059063/1). cs4fn was cre-
ated by Paul Curzon and Peter McOwan. Peter McOwan is
the inspiration behind the magic of computing. Since 2008,
Jonathan Black has helped ensure its success along with Jo
Brodie and Chrystie Myketiak. Laura Meagher has helped
enormously as our external evaluator. Nick Cook, of the
School of Computing Science at Newcastle University, or-
ganised the teacher CPD session and evaluation mentioned.

7. REFERENCES
[1] J.-D. Bauby. The Diving-Bell and the Butterfly.

Fourth Estate, 1997.

[2] T. Bell, P. Curzon, Q. Cutts, V. Dagiene, and
B. Haberman. Introducing students to computer
science with programmes that don’t emphasise
programming. In Proceedings of ITiCSE 2011, The
16th Annual Conference on Innovation and
Technology in Computer Science Education ACM
SIGCSE, page 391, June 2011. Darmstadt, Germany.

[3] J. Black, P. Curzon, C. Myketiak, and P. W.
McOwan. A study in engaging female students in

computer science using role models. In Proceedings of
ITiCSE 2011, The 16th Annual Conference on
Innovation and Technology in Computer Science
Education ACM SIGCSE, pages 63–67, June 2011.
Darmstadt, Germany.

[4] P. Curzon. Serious fun in computer science. In
Proceedings of the 12th Annual Conference on
Innovation and Technology in Computer Science
Education ACM SIGCSE (Invited Keynote), page 1.
ACM, September 2007. Dundee, Scotland.

[5] P. Curzon. Computational Thinking: Searching to
Speak. Queen Mary, University of London, 2013.

[6] P. Curzon, J. Black, L. R. Meagher, and P. W.
McOwan. cs4fn.org: Enthusing students about
computer science. In T. O. C. Hermann, T. Lauer and
M. Welte, editors, Proceedings of Informatics
Education Europe IV, pages 73–80, November 2009.
Freiburg, Germany.

[7] P. Curzon and P. W. McOwan. Engaging with
computer science through magic shows. In Proceedings
of ITiCSE 2008, The 13th Annual Conference on
Innovation and Technology in Computer Science
Education ACM SIGCSE, pages 179–183. ACM, June
2008. Madrid, Spain.

[8] P. Curzon and P. W. McOwan. Teaching formal
methods using magic tricks. In Fun with Formal
Methods: Workshop at the 25th Int. Conference on
Computer Aided Verification, July 2013.

[9] P. Curzon, P. W. McOwan, and J. Black. cs4fn:
Computer Science for Fun Magazine. Queen Mary,
University of London, 2005-2013.

[10] P. Curzon, P. W. McOwan, Q. Cutts, and T. Bell.
Enthusing and inspiring with reusable kinaesthetic
activities. In Proceedings of ITiCSE 2009, The 14th
Annual Conference on Innovation and Technology in
Computer Science Education ACM SIGCSE, pages
94–98. ACM, July 2009. Paris, France.

[11] P. W. McOwan and P. Curzon. The Magic of
Computer Science. Queen Mary, University of London,
2008.

[12] P. W. McOwan, P. Curzon, and J. Black. The Magic
of Computer Science II: Now we have your attention.
Queen Mary, University of London, 2009.

[13] L. R. Meagher, P. Curzon, P. W. McOwan, J. Black,
and J. Brodie. cs4fn Final Evaluation Report. Queen
Mary, University of London, In press.

[14] C. Myketiak, P. Curzon, J. Black, P. W. McOwan,
and L. R. Meagher. cs4fn: A flexible model for
computer science outreach. In Proceedings of the 17th
ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE), pages
297–302, 2012.

[15] C. Myketiak, P. Curzon, P. W. McOwan, and J. Black.
Teaching HCI through magic. In The Contextualised
Curriculum: A CHI 2012 workshop, May 2012.

[16] J. M. Wing. Computational thinking.
Communications of the ACM, 49:33–35, 2006.

[17] J. M. Wing. Computational thinking and thinking
about computing. Philosophical Transactions of the
Royal Society A: Mathematical Physical and
Engineering Sciences, 366(1881):3717–3725, July 2008.

50

